U.G. 2nd Semester Examination - 2022

BCA

[HONOURS]

Course Code: BBCAGEHT2

Course Title: Mathematics-II

Full Marks: 40 Time: 2 Hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **ten** questions:

 $1 \times 10 = 10$

- a) Define odd function with examples.
- b) Show that the series, $1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\dots$ is convergent.
- c) Evaluate: $\int \frac{\sin^{-1} x}{\sqrt{1-x^2}} dx.$
- d) Find the order and degree of the differential

equation
$$\left(\frac{d^3y}{dx^3}\right)^{2/3} = x^3 \frac{dy}{dx}$$
.

[Turn Over]

- e) If $y = x^x$ then find $\frac{dy}{dx}$.
- f) Evaluate: $\frac{d}{dx}(x^2 \log x)$.
- g) $\int_{-1}^{1} xe^{x^2} dx = ?$
- h) Differentiate $\sin x$ with respect to x^2 .
- i) Find the integrating factor of the differential equation. $\frac{dy}{dx} + \frac{2}{x}y = x^3$.
- j) Show that, $\int_0^1 \frac{1-x}{1+x} dx = 2 \log 2 1$.
- k) Define homogeneous function of two variables.
- 1) If f(x) = |x|, then show that f'(0) does not exist.
- m) State Euler's theorem on Homogeneous function.
- n) Define monotonic increasing sequence with example.
- o) Find the differential equation from the relation $y = Ae^{2x} + Be^{3x}$, where A and B are constant.
- 2. Answer any **five** questions: $2 \times 5 = 10$
 - a) State Cauchy's general principle of convergence.

b) Find the sum of the following series

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots$$

c) Is the function f(x), defined by

$$f(x) = \begin{cases} x^2, & \text{if } x \le 1 \\ x, & \text{if } x > 1 \end{cases}$$
 continuous at $x = 1$.

- d) Write down the formula for the integration of a product of two function.
- e) Write down the geometrical meaning of Rolle's theorem.
- f) Is the sequence 1, 2, 2², 2³, ... convergent? Justify.
- g) Evaluate: $\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$.
- h) Evaluate: $\frac{1}{D^2+1} \sin 2x$.
- 3. Answer any **two** questions: $5 \times 2 = 10$
 - a) Prove that:

$$\lim_{n \to \infty} \left[\frac{n+1}{n^2 + 1^2} + \frac{n+2}{n^2 + 2^2} + \frac{n+3}{n^2 + 3^2} + \dots + \frac{1}{n} \right]$$
$$= \frac{\pi}{4} + \frac{1}{2} \log 2.$$

b) If $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$, show that,

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \sin 2u$$

c) Use Lagrange's theorem to prove that:

$$1 + x < e^x < 1 + xe^x$$
, $\forall x > 0$

- 4. Answer any **one** question: $10 \times 1 = 10$
 - i) Find the differential equation of all circle having a constant radius.
 - ii) Evaluate: $\lim_{x\to\infty} (1+ax)^{\frac{1}{x}}$.
 - iii) State and prove Lagrange's Mean Value theorem. 3+2+5
 - b) i) Prove that the sequence $\left\{\frac{4n+3}{n+3}\right\}$ is monotone increasing and bounded.
 - ii) Test the convergence of the series

$$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots \infty$$

5+5

c) i) Evaluate:
$$\int_0^1 \frac{dx}{\sqrt{2x-x^2}}$$

ii) Solve:
$$\frac{dy}{dx} + \frac{y \log y}{x} = \frac{y(\log x)^2}{x^2}$$

iii) Solve:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = \log x$$